Hybrid Mu-follower Output Impedance

Where to start?

Well, I often get the question “what is the output impedance of the gyrator circuit?”. My response has always been “it gets close to 1/gfs as a good approximation”. Recently, I was asked the question again, but this time I decided to crack on the formulae, which is a daunting task for someone who has ditched calculus after obtaining Ms in Engineering degree more than 20 years ago.

For simplification let’s start with a simple hybrid mu-follower stage (a.k.a. Gyrator load) like the following:

Continue reading “Hybrid Mu-follower Output Impedance”

6Э6П-ДР (6e6p-dr) preamp / driver

With a quick mod on one of my active preamps, I managed to implement very quickly the 6Э6П-ДР (6e6p-dr) driver in my system. Here is how the circuit looks like:

6Э6П-ДР (6e6p-dr) preamp / driver

Continue reading “6Э6П-ДР (6e6p-dr) preamp / driver”

Driving hard (Part I)

Introduction

I’m a firm believer that if you don’t share, you don’t get back and learn. What the point of not sharing what you’ve learned? I asked myself the question again yesterday, just to push me a bit further. Joys of Easter break is that I have the time to sit down and write. At least for a little bit.

Here is the result of my quest of the years to find the best drivers for a SE amplifier. I’d been looking and experimenting with them in terms of best linearity at large volt swings (I mean large when I say 200Vpp), harmonic profile and most importantly the sound contribution.

Why should you bother? Well if you are in the DHT space (otherwise don’t bother reading further) and, unless you are building a 4P1L amplifier, the majority of the output valves require large volt swing. You also need good headroom. Therefore if the driver is clumsy, it will ruin your expensive project. Again, one of the reasons why people claim that their 300B sound bad. Achieving a driver which can perform 200Vpp effectively with minimal distortion and a decaying harmonic content isn’t a simple task.

In one of my recent post, I blogged an example of the GM70 amplifier. Look at the curves below and the demand to get all of the juice:

Yes, you can load it with a steeper load and use a 6KΩ instead of 10KΩ to get more power, but you still need the same volts to get the full swing.

The Driver Topology

I tried it (mostly) all over the years. Transformer coupled, choke loaded, resistor loaded. However, in my experience the best is the gyrator load. You may have a different view,  and so you may: well, it’s a free world and I’m not expecting you to agree with me. If you are prepared to accept my point for view, then you can continue reading this post 🙂

The hybrid mu-follower (aka gyrator load) is a very effective topology for a driver. You need sufficient volts at the supply, but that’s not generally a problem. You will need at least 25-50V more than the largest voltage swing. Most of the valves I will review below have a good compromise operating point at about 200V. For a 200Vpp or 250Vpp headroom, this means you need 200V+250V/2+50V = 375V. MOSFETs can work at this level and providing you put them the right heatsink size we’re on business!

Initially some years ago I explored the use of LEDs, diodes and particularly SiC diodes to bias the valves. However, I found later that a bit of cathode degeneration by placing and (unbypassed) resistor was a good choice. This linearise the valve a bit and won’t impact the output impedance of the driver. However, if the resistor is within a reasonable value (smaller than 300R I found in practice), the impact on the Frequency Response (FR) is manageable and also the reduction in gain of the stage.

I will present in this post my favourite contenders for the best drivers. These are:

  1. 6e6p-dr: the brother of the famous 6e5p, but a real performer on his own
  2. 6z49p-dr: an amazing pentode.
  3. 6z52p: high-gm and mu pentode. A replacement for the E810F or D3a for some. This is a pentode that works brilliantly on all fronts. Even at low voltages (thanks JC Labs)
  4. 6C45p: this little triode monkey oscillates widely, but can be tamed and works well, so don’t be afraid.
  5. 6e5p:  this famous Russian beauty doesn’t need introduction
  6. 12HL7: the sleeper and best discovery last year.

In all cases I found the sweet spot with fixed bias which allows me to dial-in the right operating point in conjunction with the gyrator setting point. Once the best performance was measured (and listened) it was replaced with an equivalent resistor and re-tested. A tedious job, but worth the efforts.

A note on oscillation

These valves have mostly high gm and gain. You’ve been warned. Don’t even attempt to build with them without special attention on the building aspects. It will oscillate, believe me. You should add grid, anode and screen stoppers. I prefer nice ferrite beads added straight to the socket pins. Continue reading “Driving hard (Part I)”

Tracing (MOS)FETs to be used in the gyrator PCB

I took out the Locky Tracer and remove some dust, it was about time. One of the most popular lower FETs I use in the gyrator PCB is the now obsolete BF862. Here is the tracing output:

Continue reading “Tracing (MOS)FETs to be used in the gyrator PCB”

UV-201a final version – finished!

After doing all the soldering part (which I enjoy much), the preamp is now finished. It sounds as good as the original breadboard:

For the curious ones, here you have a picture of the inside:

The teflon sockets are bolted straight into the 4mm top aluminium plate. No microphonic noise this way. Rod Coleman V7 regulators set to 200mA. A pair of Russian Military NOS wire-wound resistors in parallel provides the filament bias. The gyrator PCB is set as per original circuit and each valve at 3mA. These are DC coupled to the MOSFET follower PCB set at 10mA each. The output is then taken out from a pair of FT-3 teflon caps. 

Now to enjoy this beauty!

Ba German DHT Preamp, here we go…

Flying around

Travelling around Europe on business is paying its toll. I’m away from home every week and pretty exhausted now. I don’t have much time free and whatever is available I spend with my family. Hence, the lack of posts recently. I hope this will change in the future.

Anyway, what’s up in the DHT world? I listened the Aa/Ba valves long time ago but never played with them. Mainly due to their higher anode resistance. With the gyrator load and the source follower output, things take a different dimension.

German precision

I have a nice stash of Aa from Valvo (globe) and Ba from Siemens. Interesting to see that curves are not easy to find, so I submit them both to the mercy of the uTracer.  Nice to see the linear curves with high mu about 14 on the Ba to 30 in the Aa.  

Here is an example of the Ba loadline:

Continue reading “Ba German DHT Preamp, here we go…”

Gyrator PCB Update – Rev07

The gyrator PCB has been updated to fit now a wider variety of lower enhancement MOSFETs with low capacitance and high transconductance. The best examples are the BSH111BK and BSN20BK which are great options for currents above 25mA:

 

The board offers now all the flexibility needed in terms of different TO-92 and SOT-23 package pin-outs to use whatever FET you want.

 

4P1L (4П1Л) Siberian Gen4 – DHT Preamplifier

The return of the Siberian

After trying out so many DHTs and pre-amplifiers, I decided to wire up my 4P1L preamplifier Gen3 and fit the gyrator board to drive my 4P1L PSE Amplifier.  

I have a pair of 4P1L/4П1Л dated 1968 which are properly burnt in. I’ve used them lately in my previous preamp incarnation with great results. 

The circuit doesn’t need explanation, I think I’ve covered this repeatedly for a long time.  I will only point out the differences:

The main change was fitting a pair of Russian wirewound 27Ω resistors in parallel to get closer to the 15Ω used in this position. I found these Russian wirewound resistors to sound extremely well as filament bias resistors. I tend to be skeptical about the “sound” of some components in circuits, however, they do make a big impact in the cathode of a filament bias arrangement. 

The gyrator has my preferred combination: IXTP08N100D and BSH111BK. I have now an upgraded PCB Rev07 which fits the BSH111BK and similar FET and I will offer them shortly. 

The latter benefits from the 30mA idle current. The result is lower output impedance whilst providing a great frequency response overall.

M3 needs a proper heatsink, it does get hot with about 2W of dissipation. 

How does it perform?

Well, this valve has the reputation of amazing performance and low distortion. The gyrator setup provides the best out of this valve in my view. You can get a flat response as well as great bandwidht from 10Hz up to 3MHz loaded with 100kΩ:

The distortion is very low and is lower than 0.05% below 10Vrms. Dominant H2 with a lovely harmonic profile characteristic of this valve. 

How does it sounds?

i’ve been listening and using this valve extensively since 2011. I have to say that it sounds amazing. I never get tired of its sounds. Before I listened to a 4P1L-4P1L system and found a slight edge on the sound (probably due to its H3 component) which I don’t hear on my system. The drive, clarity and tone is amazing. It can drive the 4P1L PSE perfectly well and you get a strong and clear bass. Very powerful. My +600 hours 4P1L are very quiet in this setup, no microphonic noise. I don’t have even dampers in the 4P1L sockets!

Anyway, if you need 19dB (x9) gain in your system or you need a driver for your  SE amp, then this is the valve to go. I Still can be found cheaply and is a great contender to the thoriated tungsten filament DHTs like 01a and VT-25. 

Build this one and enjoy!