4P1L / 4П1Л Siberian Gen4 in Screen mode

Some time ago, I did some initial experiments with the 4P1L (4П1Л) with the screen performing as anode instead. Some DIYers claim the improved sound of the mesh type anodes. Kees Brakenhoff kindly sent me some PL519 to test in screen mode. He has done multiple builds with this mode of operation with great results. Unfortunately I’ve not had the chance yet to build such an amp.

What I could do instead though, was to mod very quickly my 4П1Л preamp to screen mode. It was a very easy and fast modification. I kept the same heating wiring and just adjusted the screen (anode) current down to 10mA: Continue reading “4P1L / 4П1Л Siberian Gen4 in Screen mode”

4P1L (4П1Л) Siberian Gen4 – DHT Preamplifier

The return of the Siberian

After trying out so many DHTs and pre-amplifiers, I decided to wire up my 4P1L preamplifier Gen3 and fit the gyrator board to drive my 4P1L PSE Amplifier.  

I have a pair of 4P1L/4П1Л dated 1968 which are properly burnt in. I’ve used them lately in my previous preamp incarnation with great results. 

The circuit doesn’t need explanation, I think I’ve covered this repeatedly for a long time.  I will only point out the differences:

The main change was fitting a pair of Russian wirewound 27Ω resistors in parallel to get closer to the 15Ω used in this position. I found these Russian wirewound resistors to sound extremely well as filament bias resistors. I tend to be skeptical about the “sound” of some components in circuits, however, they do make a big impact in the cathode of a filament bias arrangement. 

The gyrator has my preferred combination: IXTP08N100D and BSH111BK. I have now an upgraded PCB Rev07 which fits the BSH111BK and similar FET and I will offer them shortly. 

The latter benefits from the 30mA idle current. The result is lower output impedance whilst providing a great frequency response overall.

M3 needs a proper heatsink, it does get hot with about 2W of dissipation. 

How does it perform?

Well, this valve has the reputation of amazing performance and low distortion. The gyrator setup provides the best out of this valve in my view. You can get a flat response as well as great bandwidht from 10Hz up to 3MHz loaded with 100kΩ:

The distortion is very low and is lower than 0.05% below 10Vrms. Dominant H2 with a lovely harmonic profile characteristic of this valve. 

How does it sounds?

i’ve been listening and using this valve extensively since 2011. I have to say that it sounds amazing. I never get tired of its sounds. Before I listened to a 4P1L-4P1L system and found a slight edge on the sound (probably due to its H3 component) which I don’t hear on my system. The drive, clarity and tone is amazing. It can drive the 4P1L PSE perfectly well and you get a strong and clear bass. Very powerful. My +600 hours 4P1L are very quiet in this setup, no microphonic noise. I don’t have even dampers in the 4P1L sockets!

Anyway, if you need 19dB (x9) gain in your system or you need a driver for your  SE amp, then this is the valve to go. I Still can be found cheaply and is a great contender to the thoriated tungsten filament DHTs like 01a and VT-25. 

Build this one and enjoy!

4P1L: pump up the current!

Background

I’m a firm believer than sharing knowledge and experience is the best way forward to continue learning yourself. It always pay pack at some point. This time Paul Prinz, a fellow implementer of the 3B7 DHT Preamp using the gyrator PCB, came back with a great suggestion. He found a MOSFET which could do high drain currents, it has high transconductance and most importantly the parasitic capacitances were low even close to the BF862. Hooray, I thought.  We may have a great solution here to use the gyrator load for currents above 25mA and with similar performance to the great BF862. There are some other depletion MOSFETs that can do high currents, however they all have relatively high capacitances and low transconductances when VDS is low, like in the cascoded gyrator circuit. 

The BSH111BK is an enhancement MOSFET, so doesn’t have a “depletion” behaviour like the jFETs. This isn’t a problem as the bias voltage can be set by the reference CCS. 

For comparison, here is a brief summary of the key characteristics of these three devices:

  BF862 BSH111BK MMBFJ310L 
Ptot  (W) 0.3 0.3 0.225
VDSmax (V) 20 55 25
VGS off (V) -1.2   -4
IDSS (mA) 25 210 60
Gfs (mS) 45 640 18
Ciss (pF) 10 19.1 5
Crss (pF) 1.9 1.5 2.5
Coss (pF)   2.7  

Continue reading “4P1L: pump up the current!”

Gyrator Test Mule: 4P1L Preamp

4P1L gyrator test mule
4P1L gyrator test mule

It’s always great to come back and revisit a great design. The 4P1L preamp performs flawlessly so I tweaked the gyrator board to see how it worked with the BF862 FET. The result is great, it sounds as good as it measures:

4P1L Test gyrator board

The 4P1L is biased to 150V/25mA which is the maximum current that the BF862 can do (IDSS max). You can see that the frequency response is flat up to 1.5MHz. The LF response of my test mule is affected by the AC coupling of the measuring gear. However it should be around 5-10Hz.

The distortion of low-level signals is really good:

THD @ 4Vrms
THD @ 4Vrms

Predominantly H2, it’s very nice to see THD<0.015% for a 4Vrms output. The load is 100KΩ which is the typical input impedance of an amplifier (with exception of solid state gear)

This low distortion manifests across the entire audio band (ignore the THD below 20Hz which is a byproduct of my testing gear):

THD version frequency @ 4Vrms
THD version frequency @ 4Vrms

The nice thing to see also, it’s how well the 4P1L can drive larger voltage swings:

4P1L THD @ 10Vrms
4P1L THD @ 10Vrms

We can see H4 popping up, however odd harmonics are lower (H5 in fact is higher than H3). THD at 10Vrms is still below 0.03%!

 

 

4P1L Siberian Gen1 upgrade

Some of the DIYAudio fans have built this version of the 4P1L with great success. There are several upgrades that can be easily implemented to improve this. I haven’t tried this myself, but my recent experience with the Gen3 and the 01 preamp gen2, I think are worth trying:

  1. Replace the gyrator FET for a cascoded pair (M2 and M4 below) to improve PSR
  2. Replace voltage reference by a cascoded LND150 for better HF and PSR response
  3. Optimise the LF pole of the gyrator load by increasing R4 to 4.7 MΩ and reduce C1 to 220nF
  4. Bias 4P1L to about 30mA. This will reduce distortion

Hope this is useful

Ale

4P1L Siberian Gen1b v01 4P1L Siberian Gen1b v01 THD

 

4P1L Siberian DHT Preamp (Gen3)

Recently I finished the filament supply for the latest incarnation of my 4P1L pre-amplifier.  Here is the next instalment of this project. The HT power supply was refined after builiding more than 7 stacked HT supplies for the 814 SE Amplifier.

The supply design is very simple. Perhaps the selection of components and the refinement of some aspects of it is what makes the difference to me: Continue reading “4P1L Siberian DHT Preamp (Gen3)”

4P1L Siberian Gen3: Loctal socket board

Here is the 4P1L Siberian DHT preamp (Gen3) socket board. I’m using a pair of custom made teflon sockets mounted on a PCB sandwich with a 4mm silicon rubber sheet. The lower board is mounted over 4 silent blocks:

This should be a great improvement to reduce any further microphonic noise in the preamp!

 

4P1L driver – LL7903+LL1671 tests

Last week I did some preliminar tests with the LL2746 in 1:2 step-up mode.  Despite having measured good results with it, it will be a challenge to drive grid current given that the output impedance of the 4P1L will be multiplied by 4 so about 5KΩ.

Before looking at the LL1671/20mA which is suitable for multiple driver valves, let’s see how the LL2746 driver performs with the addition of the input step-up microphone transformer LL7903. I’m currently using the LL7903 in my 814 SE A2 amplifier and sounds really nice. The LL7903 was wired up in 1:4 setup so gain can get about 63:

4P1L-LL2746 test2 4P1L -LL2746 test 3 zobel optimised 200Vpp Continue reading “4P1L driver – LL7903+LL1671 tests”