Many have asked me about this preamp with gyrator load. Here is the latest implementation which I preferred most in terms of sound. The mu resistor is 470Ω which is a nice compromise between BF862 transconductance and distortion. I adjusted it on test. I use a 100nF for C1 so R6 is 10MΩ. R4 can be either 300KΩ, 330KΩ or even 390KΩ. Difference would be only on the voltage range for the CCS. I found running it at 25mA to be perfectly fine, some BF862 can even do J310. I prefer this SMD compared to the J310. It performs much better even at high frequency:
4П1Л (or 4P1L) is probably one of my favourite valves. It was an unknown device to me until was suggested by some friends in the forum. Many discarded it as being a howling beast in pre-amp stages :). I found that albeit it can be microphonic, this can be controlled to a certain extent, but in my opinion this is a great valve in most of the roles: pre-amp, driver or output stage. Preferably is such a linear valve that can easily match 2A3 and 300B characteristics (when arranged in parallel) at a fraction of their cost. You can get a view of this beauty in the datasheet here.
Looking at the specifications, the key points to highlight are:
Recommended anode voltage: 200V with 150V on the screen
Maximum operating voltage 250V anode or screen.
Maximum cathode current: 50mA
Anode dissipation: 7.5W
Screen dissipation: 1.5W
I became aware of this valve when Anatoly (a.k.a. Wavebourn) recommended the 4П1Л directly heated pentode which was used in military transmitters. It is very popular now among Russian audiophiles. Apparently is the Russian equivalent of the WWII era German Wehrmacht RL2 / 4P6 RF oscillator / transmitting amplifier tube. It’s a brilliant valve when triode strapped, better than 2A3 / 300B in terms of linearity. See my post around THD here and will see why 4P1L is at the top of the chart with less than 0.03% THD @ +22.22dBu!
As Anatoly suggested, they are very nice for class A in triode, and give up to 2.5W per valve when driven with up to +12V on control grid. It is easy to parallel them, since they are consistent and very linear: paralleling linear valves you are loosing power on mismatch, i.e. the valve with higher transconductance will draw more, no distortion raise caused by mismatch. 2A3, for example, has a pair of paralleled triodes inside. You can parallel ten of 4P1L matching them (it’s easy), to get 100W dissipation and 25W output.
Many found a sweet spot around Va=235V, Ia=40 mA, Vg=-18V providing Pout= 2.5W on a 5K OT, triode connected. Capacitance between anode and first grid for 4P1L is 0.1 pF. Capacitance between screen grid and control grid is about 1 pF. It has a 10 pF Miller capacitance which is not high value, and for 20 KHz it is slight less than 1MΩ impedance. Any driver with 10 mA idle current will make it happy.
I tested this valve a lot as a DHT preamplifier with great results. Starving filaments and suspending the socket with cord can reduce significantly its microphony to very low levels. I could listen to it perfectly fine whilst my friend Tony still have some issues with a 30sp DHT stage bolt to the aluminium top cover 🙂
I loved the sound of the 4P1L pre-amp. I will build a 4P1L SE in the future, is on my list…
Recently, a friend from the diyaudio forum asked me for the 4P1L curves which I posted previously. Here is a new trace of the curves under the following testing conditions:
G2 and G3 tied to anode
Filaments are in parallel, so If=650mA powered by DC supply.
You can create your model or use the curves to produce your load lines, etc.