Tail CCS PCB test

A belated test of this simple, yet effective PCB. I made it as small as possible, however in order to provide flexible connections, it’s actually double the size. Still at 4 x 4 cm is small enough.

Continue reading “Tail CCS PCB test”

Testing the line stage

Introduction

I couldn’t resist the temptation to try and build quickly the SLCF design proposed here.  It was question of building a simple PCB for the tail CCS and the top MOSFET follower. Wiring it then point-to-point could be done in a matter of minutes and a “rat nest” was built fast enough to enjoy this learning experience.

The usual challenges we face when breadboarding circuits

One of the challenges we face when building a cathode follower with a high-gain / transconductance valve is that it can easily oscillate widely into VHF. So we then are a bit more precocious when building the test jig and “try” to have short connections (something which I didn’t do), add some ferrite beads to anode, grid and screen. Also some grid/screen stopper resistors (e.g. 300Ω) are always very useful. If you pay attention to this and check with an oscilloscope with sufficient bandwidth (e.g. 200MHz) you can spot out any nasty oscillation from the valve. I didn’t, thanks to the ferrite beads and stoppers.

The clear challenge of the SLCF is establishing the correct bias point on the top follower due to the high value of the resistor divider and the high-variance we typically get on the VGS(th) of the MOSFETs.

High-value resistors are available on 1% but the variance on the FET defeat the purpose of accurately building the resistor divider.

Continue reading “Testing the line stage”

A simple line stage

Driving your amp

A typical challenge we may all face is how to drive effectively our amp via a stepped attenuator or an AVC. I have a 4P1L preamp which drives very well my AVC, however, I have now an LME amp which has a wimpy input impedance of less than 7K.

How do we deal with this? A simple line stage which is capable of driving the low impedance of the amp is what we need in this case. Several options are available, however I settled down for a simple cathode follower.

Why? Because I love valves, and I wanted to play around a cathode follower design here.

vinilo A heavy load for your preamp or music source may increase distortion and we don’t want that.

I set myself the challenge to design a simple linestage with a minimum number of power supplies. I could have gone for a MOSFET follower, but hey: I wanted some hollow state stuff in there! Ok, if we look into a cathode follower as the core design, this means that we need at least an HT supply and a filament supply. If we could leverage a bucket converter, we could provide the HT from a LT transformer, probably best to look into two windings to separate the filament supply from an HT one. There are cheap ready build step-up converters for peanuts, and this is what tempted me to explore this solution.

I tested recently some step-down bucket converters and was encouraged by the noise levels and the FR.

The first design, getting us started

Continue reading “A simple line stage”

LCR Phono: design notes (Part III)

My previous design wasn’t good for two reasons:
  1. Input capacitance was too high due to Miller effect.
  2. Overall gain wasn’t enough: 55dB was marginal as 60dB would be ideal for an MC stage. Obviously this doesn’t apply to an MM cartridge where 40dB should be more than ok.

Continue reading “LCR Phono: design notes (Part III)”

LCR Phono: design notes (Part II)

Introduction

This is a continuation of my previous blog post. I will try to share my experience through the design process of this RIAA stage through these individual posts with an attempt to spark some interest in others and in return to get some valuable input from the experience and knowledge of others. Hope this works!

First stage

LCR-phono-test5
Here is the initial design version for analysis. I’m working through this step by step and refining the circuit in every iteration. The initial circuit is very simple. The first stage is key. We want to achieve as much amplification as possible from this stage before we hit the LCR network. The choice of the 6S17K-V valve may appear as a surprise to the ones not familiarised with this valve.  Here are some notes from Wavebourn around this valve:

Continue reading “LCR Phono: design notes (Part II)”