CX301a DHT pre-amplifier

CX301a DHT preamp

Here is my latest incarnation of the DHT pre-amplifier:

CX301a preamp bartola

Many claim that the 26 is the best sounding DHT valve for a pre-amp. I will agree to a certain extent, however I personally found the thoriated-tungsten filament sound a bit more rewarding to my ears. A more clear and defined treble in my opinion.

Since I plugged in my CX301a incarnation of my breadboarded preamp, I just left it there as I loved its sound. Certainly there are things to be improved to enhance the dampening of microphony, albeit I have to confess it hasn’t been a problem to me. Have heard some valves to howl, and this is not one of those. Clearly suspending the valve socket or adding the rubber dampers to the valve holding plate or socket will help massively.

Filament bias is a must in my DHT designs. Since discovered it, can’t avoid not removing most capacitors that I can from the signal path. In this case the filament resistor R9 will increase anode resistance by R9 times  (μ+1). This will also impact the stage gain, but here  all this is not a problem. You may find this is way too much gain in your system. Rod Coleman’s filament DC regulators are crucial to provide a hum-free stage. Attempting AC or other DC regulator is likely to bring frustration to your design. Believe me, I’ve been there before…

Now turning our attention to the anode load I will not open a debate here (or a can of worms!). You can make your choice of using a superior quality output transformer (and by superior means a lot of money!) or you can look at various options. A choke is a great idea, but special care needs to be taken to ensure choke is not picking up any hum from the remaining parts of the circuit – specially the supply transformers, etc. I have experimented for some time various types of CCS or gyrators as sandy loads for the valves with excellent results. If you are one of those that feels that sand is a sacrilege, then I suggest you stop reading this post now.

Gyrators are superb. They can simulate the AC response of an inductor of 300H (but without storing energy as a real inductor) or above very easily at 1/100 of its cost. You can easily adjust the valve operating point ensuring this is maintained despite the ageing impact of the valve or the eventual replacement of it. The anode voltage will be fixed by the gyrator, the current not. Cascoded MOSFET gyrators provide better supply ripple rejection and isolation. Using Q3 as a CCS instead of a high resistance potentiometer to set the anode voltage is better as it helps providing a better frequency response as impedance on this node is increased. A higher value of R10 will help reducing the size of the gyrator capacitor and the smaller the better it will sound in my experience.

M1 and M2 can be your depletion FET of choice. M1 should be a 250V rated one at least. Depending where you live, you will be inclined for using BSP129, LND150 or DN2540.

Previously I mentioned in some other posts that the mu-follower setup of the gyrator here provides a better output impedance and improves the performance of this valve significantly given its high anode resistance compared to other more suitable DHTs for this purpose such as 4P1L, 46 or 71a.

I’m not going to cover the HT supply here, but using a shunt regulator such as Salas, is one of the best choices here.

With Russian PIO capacitors you will get a fantastic result here, no need to start burning serious money on the capacitors until you are happy with the end to end build and you can then start looking at how to improve the sound of it by replacing some bits with better (or preferred) quality components

CX301a preamp bartola THD

With an operating point of Ia=3mA you can get THD=0.08% at Vo=10Vpp. This will be subject of the quality of your CX301a. Some older globe 01a’s have a great sound, but they are not that linear. Hard to pick and chose your precious ladies here without testing them for linearity.

You better driver yourself

Time ago I asked Rod Coleman about the driving requirements of my 01a preamp whilst investigating the addition of a source follower stage to the preamp. Let’s have a look at a DHT stage loaded with a gyrator (or could well be a choke or whatever you like) driving a power amplifier.

 

Have you asked yourself whether your pre-amp is capable of driving your amp? How much burden does the cable parasitic capacitance add to the mix?

As an example we will use my current setup. A 45 SE amplifier with a 6j5 driver stage. We can approximate input impedance formed by:

Ci=(Cp+(\mu+1)\cdot Cag)

Where Ci is the amplifier’s input capacitance formed by the Miller effect of the valve’s input capacitance (Cag) and the additional parasitic capacitance of socket, wires and so forth. In this practical example where the input valve is an 6J5GT:

Cp=50pF,\mu=20, Cag=4pF

Ci=(50pF+(20+1)\cdot 4pF)) \rightarrow Ci \approx 140pF
If we now add the cable capacitance which could easily be 100pF per metre and at least 2 metres run from my pre-amp to the amp then:
Ct= Ci+Ccable \rightarrow Ct=130pF+(100pF \cdot 2) = 330pF
So with an input resistance of 100kΩ and a capacitance of about 330pF let’s have a look at the current requirements to drive this load. The cable current @ 50kHz should be:
 Xc=\tfrac{1}{2\cdot \pi \cdot f\cdot C}=\tfrac{1}{2\cdot \pi \cdot 50kHz\cdot 330pF} \approx 9650 \Omega
Preamps output peak voltage is around 10V, So the current demanded by the cables would be:
Ip=\frac {Vp}{Zc}=\frac{10V}{9650\Omega }\approx 1mA
So if we want the preamp valve to source 1mA to the load, we need x10 current driving capability to be on the safe side. Clearly with an 26 (or 01a) we are a little on the low side as the bias current won’t be more than 4-6mA.
So there are clearly facts here to support the addition of a source/cathode-follower stage to the amp in addition to the improvement on the bass response due to a lower output impedance. Something we will look at some other time….