Input capacitance

Drive Mr. Miller, drive…

20131222-102022.jpg
Input capacitance test rig

Whilst designing triode driver stages for a 300B SE amplifier, I looked into the input capacitance of high-mu triode (or triode-strapped pentodes) that are suitable candidates here. We know Miller capacitance is the big drawback of the triode driver stage, so I kind of liked the idea of testing how much this capacitance could be for the lovely Russian triode-strapped pentodes like 6e5p, 6e6p, 6j11p, 6j5p, 6j52p, etc.

Continue reading “Input capacitance”

46 DHT driver final tests

20130105-125459.jpg

Having built the 4P1L filament bias driver stage in a breadboard, I now have the sufficient voltage swing to drive the 46 to maximum sweep. In my 4-65a SE amp, a maximum of 200Vpp is required to drive the amp into class A2.

The following tests conditions were used:

  • 4P1L first stage:
    • DN2540 gyrator in mu follower output
    • 220nF/450V Capacitor coupled into 46 driver
    • Filament bias: 15 ohms, Vgk=-10V
    • Vsupply=355V and Va0=210V
    • Output set to about 30-32Vpp to drive 46 at 200Vpp
  • 46 driver stage:
    • IXYS 01N100 gyrator in mu follower output
    • Load impedance is 100K (Pete Millett’s interface)
    • Filament bias: 10 ohm / 100W Vgk=-17V
    • Vsupply=355V and Va0=204-208V
    • Output set to 200Vpp

I tested 28 valves. Just a few of my lot are NOS. The average THD was about 0.4-0.5% but a good selection of 8 valves (mainly Sylvania NOS) provided a consistent 0.18% THD:

4P1L into 46 driver test2Happy now with the initial tests and selection of 46 pairs for the amplifier, I can now continue with the build…

4P1L Driver Tests

4P1L is a sublime DHT. As shown before it’s one of the most linear valves in triode mode. I built a breadboard in filament bias to test 4P1L as a driver using a MOSFET gyrator in mu-follower mode:

4P1L triode driver filament bias 1

20130104-205239.jpgMy test set can only drive the 4P1L output to 30Vrms and the distortion is only 0.027%!

I was intrigued by the performance of this driver in pentode so did a quick modification to provide a screen fixed voltage instead via a source follower and adjusted the bias voltage to minimise distortion. I found that a bias of about 120V was the best. This setup wasn’t the ideal one as in filament bias the frequency response is really poor as there is no cathode resistor bypass. The gain is about 200 with the gyrator used:

4P1L pentode driver filament bias 1A distortion of 0.58% @ 200V peak-to-peak is really good. The filament bias is forcing the pentode to operate with low anode current so I guess that with a lower bias point performance will improve. I will have to test this.

The measured THD was:

  • 0.125% @ Vo=100Vpp
  • 0.34% @ Vo=150Vpp
  • 0.58% @ Vo=200Vpp

Interesting to see the increase of H3 and H5 as a result of the pentode operation.

The breadboard for pentode can be improved for sure. I will look next at reducing the bias voltage as a first step. Interesting results which show that 4P1L is a great driver both in triode and in pentode modes.

 

4-65a SE Amp: refining the 46 driver

 

I did some tests today and looked at minimising distortion of this 46 driver in filament bias and found that Va=230V (instead of 184V) to provide best performance:20130101-134450.jpgFilament bias resistor array is now laid out horizontally to improve the dissipation of heat.

Here is the performance (0.05% at 17Vrms) at maximum drive input from my audio test set:

46 Driver Test2 17Vrms

 

4-65a SE Amp: testing the 46 driver

46 driver breadboarded. The mu-follower gyrator, the filament bias resistor array and the nice teflon UX5 socket from Jakeband. The filament bias resistor array is formed by 4 10Ω 20W dale wirewound resistors. These get very hot so probably need to think an alternative layout or further resistors in parallel:20121231-191140.jpgThe performance is very good. I just picked up a random 46 from my stock and biased it at 204V (which is the operating point in my design) achieving less than 0.05% at 10Vrms. Need to re-run this test to see how will perform at 70Vrms:46 Driver Test1 10Vrms

20121231-191152.jpg

20121231-191204.jpg

Using my spice model created from a good 46 valve, THD should be around 0.15% at 200Vpp with a 100K load and performance is great to loads down to 100 ohms. Clearly the load in A2 will change from high impedance to some kΩ so this driver should maintain outstanding linearity all the way through:
46 driver THD

4-65a SE Amp: 46 Driver Gyrator

 A day of PCB etching

20121230-194358.jpgAfter a lot of work today in designing many PCBs, I finally got a pair of mu-follower MOSFET gyrators for the 46 driver stage.  The driver has to provide very low impedance to operate the 4-65a output valve in class A2. The gyrator in mu-follower configuration will enable the right bias point as the amplifier is DC coupled as well as maximum signal (and current in A2) with minimum distortion.

Many don’t like sand at all in their amplifiers. I have a lot of experience with gyrators and CCS loads in pre-amps and drivers as well. I have to say that with MOSFETs gyrators the sound is really nice. For an A2 driver, not many options are available and the gyrator is a great choice for this job.

I built two PCBs (one per channel) and the circuit is the classic depletion-mode MOSFET gyrator based on the high-voltage IXTP01N100D. I guess that a DN2540 should work as well here but I’ve been saving the IXYS for this occasion. The reference voltage for the anode bias point is provided by the CCS formed by M1 (LND150) which provides a higher impedance in AC improving the frequency response of the gyrator.

4-64-65a driverThe 46 is operating in triode-mode and filament bias with a Rod Coleman filament regulator. R6 is approximately 1/gm and output voltage is set by P1 to achieve the 4-65a bias point as the amplifier has stacked power supplies given coupling is DC, so no capacitors in the path to the grid.

Next: some tests on these gyrators and the filament boards…

 

 

 

Improving the CX301a DHT pre-amp

An idea discussed with Rod Coleman, Andy Evans and others in DYIAudio forum which still is evolving. The purpose is to increase the output driving capability of this preamp using a cathode-follower stage. A bonus is to provide the filament bias using the cathode-follower valve filaments:

CX301a DHT preamp cathode follower

A 26 DHT pre-amp from Albert

Albert sent me recently some great pictures and feedback of his 26 pre-amplifier using gyrator as the anode load similar to my design on the 26/01a.

DSCN0734 DSCN0742Here are Albert’s notes on his 26 preamp:

“I have my 326 with separated power supply, 5U4G – 8uf PIO – 20H – 50 ASC – 30H – 50 ASC + 18uf pp feeding the  Salas’ HV Shunt V2 Regulator, then to 2 ( left and right ) cascoded DN2540 gyrators. Rod’s filament supply coupled with filament bias @ 850mA with anode @135v. I don’t have anything to check the distortion, but this is the most good sound preamp that I have finished to date. It pleases my ears so much that I have the intention to turn it on once I’m in the house. It sounds gorgerous with very good image seperation. Sound stages are wide, deep and absolute quiet. The highs are sparkling smooth with lots of details. Mids are lush and warm with admirable vocals. I’ve found it even better at the lows if compare with 2x 156c. It goes deeper with clear notes.”

 

 

A new 4P1L Siberian from Martin

Martin kindly sent me a couple of pictures of his latest DHT preamp incarnation of the 4P1L Siberian:

Here are some notes from Martin about his pre-amp:
“A bit more about the circuit, I have built the power supply around the nice AZ1 mesh rectifier. First cap after the rectifier is an obligato 6,8 UF oil followed by a 10H choke and a 100 UF ASC followed by the SSHV2 that I purchased via DiyAudio group buy. On your suggestion I have used the CCS from your 301A preamp. If I refer to my previous preamp with the EF6 penthode in triode connection in parafeed configuration I can say that the 4P1L preamp sounds more detailed and with more air around the instruments. Finally I will do some tests with different output caps to find out if this makes a difference. At the moment I use the Vitamin Q.

Best regards,
Martin”