A very interesting point was raised on the 4P1L DIYAudio thread around the gyrator circuit using CCS and whether a simple resistor divider was better than the CCS due to the LND150 temperature drift.
I’ve tried both options and I’d say I prefer the CCS despite the variation with temperature for the following reasons (which people may well disagree):
- It’s true the LND150 varies a lot with temperature (see attached), however if it’s operated at low current (e.g.<500μA) the variation is small. In a cascoded pair for this circuit the drift in the output voltage is small. Simulated in Spice I get about 6.35mV/°C. The resistor divider will be better of course but you need a smaller values to reduce impact of dR/dT. This creates another problem which is the reduced PSR. With a compromise divider to balance idle current and PSR you can get 5 times less variation with temperature in the circuit under discussion – see below (e.g. 1.4mV/°C)
- For a smaller value of resistor divider the PSR is impacted and significantly lower than the CCS. If you don’t have a well filtered supply, the PSR benefits of the gyrator will be reduced due to this. For example, I did some quick comparisons by simulating my 01a preamp. I used a 235KΩ/220KΩ and a 23K5Ω/22KΩ divider options with a typical film decoupling cap of 4.7μF.
The PSR of the CCS is above 100dB whilst the PSR of the resistor divider goes from 56dB (235KΩ/220KΩ divider) down to 37dB (23K5Ω/22KΩ divider).
In practice, I implemented two different circuits as I had a shunt regulator before when I had a resistor divider and now I don’t have any shunt regulator but I use the CCS version.
Looking at the output PSR as the gyrator provides additional rejection to noise. The resistor divider PSR is about 73dB and CCS is 30dB better anyway
The voltage variance is really small with temperature and this circuit in particular isn’t affected by such small drift in my view