DHTs and cathode bias degeneration

A few years back I went down the path of exploring different DHT in pre-amp stages for sonic improvements on detail and dynamics. I explored all sorts of different DHTs as have posted in the blog and many more I never got around to write up about.

Continue reading “DHTs and cathode bias degeneration”

300B filament supply

In the process of rebuilding my old 300B amplifier, I decided to make a new filament power supply. It all came up around the components I had at hand, so it could’ve been improved but that meant extra cost:

I have a pair of custom-made JMS transformers with multi-taps secondaries. This helps me tweaking the right output voltage. Anyhow, any 15V transformer would do. Perhaps you want 14V to ensure you don’t dissipate too much on the filament regulators (e.g. Rod Coleman regulators)

I used my flexible LT supply PCB which allowed me to build this in less than 1 hour. I also used some existing chokes made in the UK by “Spirit” which are ok for this purpose. The Lundahls are in use, so can’t reuse them:

300B filament board ready

I used some SOT-128-2 schottky rectifiers but any other should work as well. Resistors are wirewound and the CMR choke is what I had in stock as well. A simple 15mH/3A should do fine.

The output measured well at 9V with a 6R load which dragged 1.5A. A bit more than the 300B but should be a good indication of performance. Also ripple level is good at 2.5mVrms. The rest will be cleaned up by the regulator itself 🙂

 

cx-112a DHT preamp

Introduction

This was one of my first DHT preamps. I found a quartet of NOS CX-112a Cunningham (globe) back in Buenos Aires many years ago and built one of my first DHT preamps. I loved it. I played with it before I moved into the 26 and then started the long exploratory journey with DHTs. 

The CX-112a can be easily fit in an existing 01a preamp. Take a look at what Thomas Mayer recently blogged about this valve, worth reading it. 

Well, you can get more current drive than 01a (nearly double) but no thoriated tungsten filaments. Anyhow, the gain is slightly higher but is very easy to adapt to my gyrator-based circuit, that I couldn’t resist to take the quartet out of my valve stash and make them sing again after so many years.

Continue reading “cx-112a DHT preamp”

DHT preamp “The Mule”

The birth of the Mule

The name I guess says it all. This is yet another DHT preamp with the gyrator PCB. So what’s different? Simply, a breadboard DHT preamp module ready to be abused.  I’m planning to mod this to death and try a long list of other DHTs with the gyrator load. 

I will only need to change the valve sockets (or build an adaptor) as well as the filament resistors and Rod Coleman filament regulators. Simple changes which can be done fast, will open the door to quick tests on my system.

In order to make this simple and a rapid build, I opted to use an IKEA chopping board. These are made of a laminated hardwood and are dirt cheap. A couple of hours are required to drill all the board like this:

Job done. You only need to do this once. Here is another look at the half-build Mule:

The initial sockets are NOS short pin UX-4/UV-4. I will play around with the 01a before I move to other DHTs. I still need to add the tag strips for filament resistors, output capacitors and the filament regulators. 

Wiring will take a couple of hours and we should have another DHT amp to play with 🙂

 

Tony’s 01a Preamp

IMG_3291I went to see my friend Tony today and helped him to fix his 01a preamp implementation. Time ago Tony used a prototype version of my gyrator PCB to build the Gen2 preamp with the addition of an output follower to address the slew rate limitations he had on his system due to the larger capacitive load.

Luckily we found the fault easily and it was a bad solder in one of the smoothing HT chokes. Once fault was rectified, we proceeded to take some measurements of this preamp.

Continue reading “Tony’s 01a Preamp”

Fixed bias regulator

 Testing the Rod Coleman Fixed Regulator

As part of my 300B SE project design, I looked into various fixed bias arrangements and regulators. Rod Coleman has developed another fantastic circuit after the success of his DHT filament regulator which is now the preferred filament supply kit within the DIY audio community. After many years of refining the DC filament regulator, Rod came up with a clever design for fixed bias using the same concept: a gyrator and a temperature-compensated CCS. Instead of feeding a current through the DHT filaments, in this case the current is used to generate a clean bias voltage across a “bias resistor”. The bias resistor is bypassed by a capacitor as the high impedance loop formed by the regulator and the bias resistor is sensitive to pick up HF noise which could be amplified by our system.

The kit is of the same quality you would expect from Rod’s boards and very easy to build. It takes less than an hour to build the boards:

20140209-185856.jpg

Continue reading “Fixed bias regulator”

4-65a SE Amp: 46 Driver Raw Supply

One more filament raw supply completed today: the 46 driver in filament bias. This driver stage requires 26V @ 1.7A due to the filament bias requirements. Yes, nearly 45W in the filament but will provide a fantastic driver stage with the 46 triode-strapped and filament bias to avoid any nasty capacitor in the signal path.

The power supply design is very simple and follows Rod Coleman’s recommendations for the DHT filament regulators. One drawback in this version, compared to the output stage raw supply, is that this will be pure capacitor filtering with no help of a choke to reduce the input current pulses.

4-65a 46 driver filament raw


The split-bobbin 150VA transformer provides sufficient current for the capacitor input filtering stage. The DSB10I45 (Schottky 45V/10A) bridge is also mounted on a “L” shape aluminium piece.IMG_3591

The capacitor arrays are soldered to a thick bare wire which provides structure and simplifies connections between components: IMG_3592

I was initially concerned that without shielding the high-current pulses may introduce some noise in the output as F2 fuse is mounted on the transformer frame so the wire is routed back and forward to that point. Reality is that the hum level is very low. I measured 16.4mV peak-to-peak at full load.